Spin-Statistics Violations from Superstring Theory

Mark G. Jackson Lorentz Institute for Theoretical Physics University of Leiden

MGJ, arXiv:0803.4472, arXiv: 0809.2733 MGJ and S. Hellerman, work in progress

Theoretical and Experimental Aspects of the Spin-Statistics Connection and Related Symmetries Workshop Trieste, October 24, 2008

Introduction

 It is a well-established experimental fact that a particle's spin (integral or half-integral) and its statistics (symmetric or antisymmetric) are found to be correlated,

bosons: $[a_{\mathbf{k}}, a_{\mathbf{k}'}^{\dagger}] = \delta_{\mathbf{k}, \mathbf{k}'}, \quad \text{fermions}: \{b_{\mathbf{k}}, b_{\mathbf{k}'}^{\dagger}\} = \delta_{\mathbf{k}, \mathbf{k}'}.$

- There are a variety of ways to modify these relations based on breaking of Lorentz invariance, locality, etc. (see review by Greenberg 2000)
- Any detected violations, however slight, would be tremendously important for physics
- Could even have cosmological consequences due to mismatch in loop cancellation of vacuum energy (MGJ and Hogan 2007)

Motivation

Ideally some high-energy theory would predict exactly how SS violations would come about

 The leading such theory is <u>superstring theory</u>, which relies on extended objects (strings, membranes, etc.) and so in principle could easily produce such violations

Outline

- Basics of Gauge Theory and Superstring Interactions
- Heterotic Worldsheet Linkings
 - Motivation
 - Explicit Instantonlike Solutions
 - Violation in Effective Field Theory
 - Experimental Bounds
- Braneworlds and Noncommutative Geometry
 - Basics
 - Relationship between string theory and NCG
 - NCG and spin-statistics violations
 - Experimental Bounds

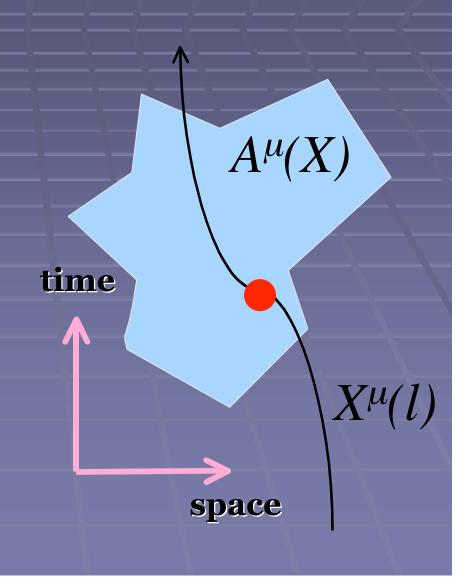
Gauge Theory Interactions

 Point particles couple to a 1-form gauge field A_µ via the worldline interaction term

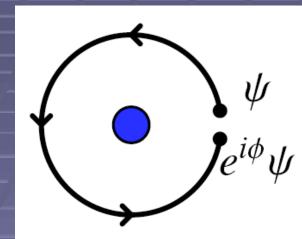
 $S = q \int dl \ \dot{X}^{\mu} A_{\mu}.$

which is then used to compute amplitudes via the path integral

$$\mathcal{A}(\cdots) = \int [\mathcal{D}A] [\mathcal{D}X] e^{iS[A,X]}(\cdots)$$



Statistical Phases in 2+1 Dims



 Consider a second particle producing a localized flux tube given by

$$A_i = -\frac{\Phi \epsilon_{ij} X^j}{4\pi |X|^2},$$

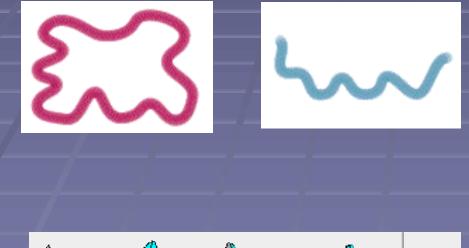
$$B_{12} = \Phi \delta^2(X).$$

Moving one particle around another is a topologically well-defined process in 2+1 dimensions and with some coupling q to gauge field will produce a phase a la Aharonov and Bohm:

$$\Delta \phi = q \int dl \, \dot{X}^i \left(-\frac{\Phi}{4\pi} \epsilon_{ij} \partial^j \ln |X| \right) = q \Phi.$$

Thus we can have particles of <u>any</u> statistics, named 'anyons' (Wilczek 1982)

A Very Quick Summary of Superstring Theory



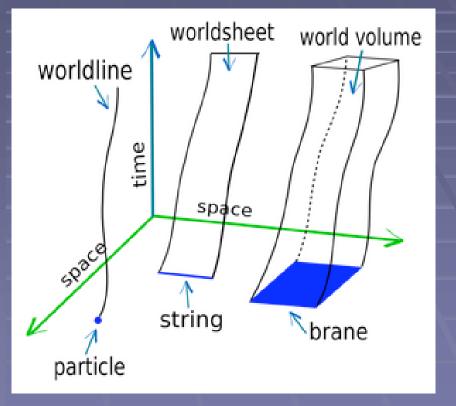
- Superstring Theory models all elementary particles as tiny vibrating strings
- The oscillations of the strings are in principle completely determined, and thus so is the spectrum
- We can also perform the path integral over the position of strings to compute scattering amplitudes

Worldsheet Interactions

 Similar to point particles, strings couple to a 2-form gauge field
 B_{µν} via the worldsheet interaction term

$$S = \int d^2 z \; \partial X^{\mu} \bar{\partial} X^{\nu} B_{\mu\nu}$$

 We can use this in exactly the same way as for point particles!



Method #1: Phases in 3+1 Dims, 'linkings'

- Moving a particle through a loop of string is topologically welldefined in 3+1 dimensions and can produce a phase via an appropriate coupling
- Such a topological 'linking number' is defined as

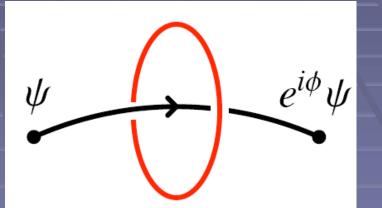
$$N = \frac{\epsilon^{\mu\nu\rho\lambda}}{4\pi^2} \int d\Sigma_{\mu\nu}(X) \int dY_{\rho} \frac{(X-Y)_{\lambda}}{|X-Y|^4}$$

 Comparing this to the previous coupling

$$S = \int d^2 z \; \partial X^{\mu} \bar{\partial} X^{\nu} B_{\mu\nu}$$

this means we desire the second particle to source the *B*-field as

$$B_{\mu\nu}(x) = \frac{q\epsilon_{\mu\nu\rho\lambda}}{\theta} \int dl \ \partial^{[\rho}G(x-Y)\dot{Y}^{\lambda]}$$



Heterotic Worldsheet Linkings

Such a sourcing can be obtained for a changed particle using the 'BF' term

$$S_{BF} = \int d^4x \ \epsilon^{\mu\nu\rho\lambda} B_{\mu\nu} \partial_\rho A_\lambda$$

- This arises naturally in the context of heterotic strings, and so if we approximate one such string as pointlike we could produce a linking-induced phase as above
- This was utilized by <u>Harvey and Liu 1990</u> to possibly produce small violations of spinstatistics.

A Paradox!?

• How can string theory, which has always produced local, Lorentzinvariant point-particle quantum field theories, give such a violation?

Non-local Propagators

This type of interaction could only be modeled by having the usual spacetime propagator be modified into something of the form:

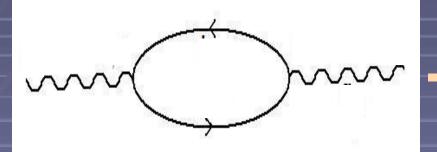
bosons :
$$\frac{1}{(p^2 - m^2)^{1+\epsilon}},$$

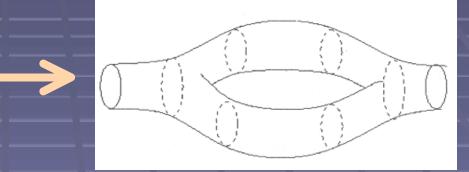
fermions :
$$\frac{p'+m}{(p^2-m^2)^{1+\epsilon}},$$

- $0 < |\epsilon| \ll 1.$
- Such 'nonlocal' propagators (since they form an infinite series in p ~- id/dx) allow one to evade the Spin-Statistics Theorem (Gulzari, Srivastava, Swain, Widom 2006; da Cruz 2000, 2004)

 These have occurred previously in string theory, but only on strange backgrounds (Taylor and Zwiebach 2003)

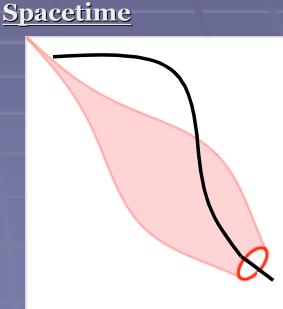
1-loop Violation of Spin-Statistics





Worldsheet

- Such an effect is expected to appear from 1-loop perturbative corrections to the propagator, which for the worldsheet is topologically a torus.
- This corresponds to the string emitting and then absorbing a virtual photon which has passed through its worldsheet

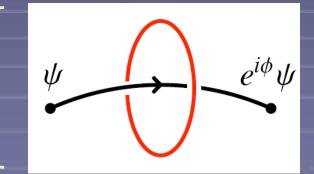


Harvey-Liu process whereby one string momentarily expands sufficiently to envelop another, producing a phase in the path integral.

How Large is this Effect?

The magnitude of this effect is expected to be suppressed by the energy scale:

 $A \sim \exp(-\Delta x^2 / \alpha'),$



(where $1/\alpha$ ' is the string tension)

This unfortunately makes the effect extraordinarily difficult to observe: for a typical value of α' ~ (10¹⁶ GeV)⁻², a ~ TeV string would have a violation of order ~ exp(-10²⁶).

Evaluating the 1-loop Amplitude

Investigation of this process is currently underway (MGJ and S. Hellerman). But in the meantime, maybe there is a simpler toy model which could estimate the importance of such an effect, that of worldsheet instantons.

Explicit Instanton Solutions

 Let us try to construct explicit solutions for these instantons (Jackson 2008). The action for the first (extended) string is

$$S_1 = \frac{1}{2\pi\alpha'} \int d^2 z \left[\partial X^{\mu} \bar{\partial} X^{\nu} (\delta_{\mu\nu} + 2\pi\alpha' B_{\mu\nu}) + 2\pi\alpha' \delta^2(z,\bar{z}) k_1 \cdot X \right]$$

The action for the second (point-like) string is

$$S_2 = \int dl \left[\frac{1}{2\alpha'} \dot{Y} \cdot \dot{Y} + \dot{Y} \cdot (iqA - k_2) \right].$$

The action for the gauge fields is

$$S_{gauge} = \int d^4x \left[\frac{3\alpha'}{32g^2} \tilde{H}^2 + \frac{1}{4g^2} F^2 + \theta \epsilon^{\mu\nu\rho\lambda} B_{\mu\nu} \partial_\rho A_\lambda \right]$$

■ By taking $\theta g^2 \to \infty$ then the gauge kinetic fields can be neglected and we can solve for *A*,*B* explicitly.

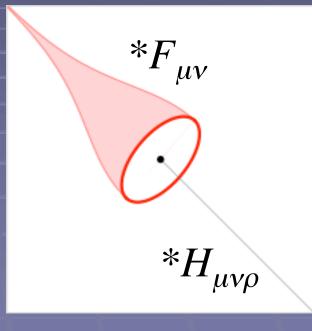
The *BF* coupling in a simplified limit

$$B_{\mu\nu}(x) = \frac{q\epsilon_{\mu\nu\rho\lambda}}{\theta} \int dl \ \partial^{[\rho}G(x-Y)\dot{Y}^{\lambda]},$$

$$A_{\mu}(x) = \frac{i\epsilon_{\mu\nu\rho\lambda}}{2\theta} \int d^{2}z \ \partial^{[\nu}G(x-X)\partial X^{\rho}\bar{\partial}X^{\lambda]}$$

$$S_{eff} \sim -\theta \int B \wedge F$$

$$\sim -\frac{iq}{\theta} \frac{\epsilon^{\mu\nu\rho\lambda}}{4\pi^2} \int d\Sigma_{\mu\nu}(X) \int dY_{\rho} \frac{(X-Y)_{\lambda}}{|X-Y|^4}$$



This is the linking number!

The BPS Transformation

We can 'complete the square' to rewrite this as

$$\begin{split} S_{eff} &= \frac{1}{2\pi\alpha'} \int d^2 z \, \left| \partial (X - \alpha' k_1 \ln |z|) \right|^2 + \frac{1}{2\alpha'} \int dl |\dot{Y} - \alpha' k_2|^2 + i \frac{qN}{\theta} \\ &= \frac{1}{2\pi\alpha'} \int d^2 z \, \left| \partial (X^\mu - \alpha' k_1^\mu \ln |z|) \right. \\ &= i \frac{\pi q C \alpha'}{\theta} \epsilon^\mu_{\ \nu\rho\lambda} \partial (X^\nu + \alpha' k_1^\nu \ln |z|) \int dY^\rho \partial^\lambda G(X - Y) \right|^2 \\ &+ \frac{1}{2\alpha'} \int dl \, \left| \dot{Y} - \alpha' k_2 \right|^2 + \frac{qN}{\theta} \left(i \pm C \right) \end{split}$$

with topological linking number

 $N = \frac{\epsilon^{\mu\nu\rho\lambda}}{4\pi^2} \int d\Sigma_{\mu\nu}(X) \int dY_{\rho} \frac{(X-Y)_{\lambda}}{|X-Y|^4}$

 By setting the squared terms to zero we minimize the action, and have only first-order differential equations

Lack of Instanton Solutions

The equation for Y is trivial, and so is the solution:
 Y(l) = α'k₂l,

The equation for X, however, is nontrivial,

$$z\partial X^{\mu} = \alpha' \left(\delta^{\mu}{}_{\nu} + i \frac{qC\alpha'}{4\theta} \epsilon^{\mu}{}_{\nu\rho\lambda} \frac{X^{\rho}_{\perp} \hat{k}^{\lambda}_{2}}{|X_{\perp}|^{3}} \right)^{-1} \left(\delta^{\nu}{}_{\gamma} - i \frac{qC\alpha'}{4\theta} \epsilon^{\nu}{}_{\gamma\kappa\sigma} \frac{X^{\kappa}_{\perp} \hat{k}^{\sigma}_{2}}{|X_{\perp}|^{3}} \right) k_{1}^{\gamma}.$$

but the solution is still trivial:

 $X = \alpha' k_1 \ln |z|$

Hindsight is 20/20

This makes perfect sense; the particle feels no force as ^{θg² → ∞}, merely a statistical phase; there is nothing keeping the string open as another passes through it. This can be remedied by adding a *U(1)* coupling to the particle:

$$\Delta S_1 = \frac{1}{2\pi} \int d^2 z \ J(z) A_\mu \bar{\partial} X^\mu$$
$$\approx iQ \int d\tau \ A_\mu \dot{X}^\mu$$

- The electrostatic repulsion will now keep it at a distance $R \sim \sqrt{g^2 q Q \alpha'}$.
- Unfortunately this means we cannot take the same simplifying limit as before, since the force requires finite coupling.

Spin-Statistics Violations in Effective Field Theory

• Let us suppose that we <u>do</u> know the solutions, which will be of the form $X_N = \alpha' k_1 \ln |z| + f_N(|z|),$

 $X_N = \alpha k_1 \ln |z| + f_N(|z|)$ $S_N = \frac{q}{\theta} \left(iN + C|N| \right).$

The amplitude including summation over linkings is

$$\mathcal{A}_{12} = \int d^2 z \sum_{N} e^{-k_2 \cdot [\alpha' k_1 \ln |z| + f_N(|z|)] + iN/\theta - |N|C/\theta}$$

which corresponds to the effective string propagator

$$\Delta_{eff} = \frac{1}{2\pi} \int_0^\infty d\tau \ e^{-H\tau} \sum_N e^{F_N(H,\tau) + iN/\theta - |N|C/\theta} \int_{-\pi}^{\pi} d\sigma \ e^{i\sigma P}$$
Usual propagator keeps
only $N=0$ contribution

Spin-Statistics Violations in Effective Field Theory

$$\begin{split} \Delta &= \int_0^\infty d\tau e^{-\tau H} \\ &= \frac{1}{H} = \frac{1}{p^2 - m^2} \\ \Delta_{eff} &= \int_0^\infty d\tau \sum_N e^{-\tau H + F_N(H,\tau) + iN/\theta - |N|C/\theta} \\ &\sim \int_0^\infty \frac{d\tau e^{-\tau H}}{1 - e^{-F(\tau,H)/\theta}} \\ &\sim \frac{1}{H^{1+\theta}} = \frac{1}{(p^2 - m^2)^{1+\theta}} \end{split}$$

This is precisely the nonlocal propagator that we wanted!

Experimental Constraints

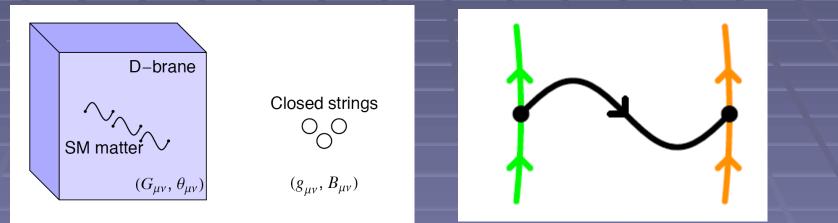
- Difficult to constrain this, since we don't know whether linkings scale with energy scale or some small parameter like θ.
- If it scales with <u>energy</u>, then for low string tension α' ~ (10 TeV)⁻² we would see this at the LHC
- If it scales with <u>a small parameter</u>, low-energy but precise experiments such as VIP (<u>Bartalucci et al.</u> 2006) would see it due to the extraordinary bounds on the Pauli Exclusion Principle,

 $\frac{\beta^2}{2} \le 4.5 \times 10^{-28}.$

in terms of the Ignatiev-Kumzin-Greenberg-Mohapatra β parameter (Ignatiev and Kumzin 1987; Greenberg and Mohapatra 1989). This is even expected to improve 2 orders of magnitude in the next few years.

Method #2: Braneworlds

Some string theory-motivated models of our universe imagine our 3+1 dimensions to be the worldvolume of a Dbrane: (Blumenhagen, Cvetic, Langacker, Shiu 2005)



Standard Model particles are open strings whose endpoints are attached to the brane with boundary conditions

$$g_{\mu\nu}(\partial - \bar{\partial})X^{\nu} + 2\pi\alpha' B_{\mu\nu}(\partial + \bar{\partial})X^{\nu}\big|_{z=\bar{z}} = 0.$$

This means the g_{µν} and B_{µν} fields get mixed together for open strings, and it is more natural to instead talk about the fields G_{µν} and θ_{µν} which are each some combination of g_{µν} and B_{µν}

Noncommutative Geometry

These boundary conditions simplify considerably when taking a particular lowenergy limit: (Seiberg and Witten 1999)

 $\theta^{\mu\nu} = (B^{-1})^{\mu\nu} \qquad \alpha' \sim \sqrt{\epsilon} \to 0 \qquad g_{\mu\nu} \sim \epsilon \to 0$ Then fields are multiplied according to the rule

$$\phi(x)\star \Phi(y)=e^{\frac{i}{2}\theta^{\mu\nu}\frac{\partial}{\partial x^{\mu}}\frac{\partial}{\partial y^{\nu}}}\phi(x)\Phi(y).$$

which effectively means that coordinates don't commute by a constant,

$$[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu}.$$

■ NC geometry is interesting and natural; if [p,x] ≠ 0, why should [x,y]=0?

Nonlocality from Noncommutation

To evade the Spin-Statistics Theorem there must be some sort of nonlocality, which can be detected in the spacelike-separated particle creation amplitude: (Chaichian, Nishijima, Tureanu 2002)

$$\langle 0| \left[: \phi(x) \star \phi(x) ::, : \phi(y) \star \phi(y) ::\right]|_{x^0 = y^0} |p, p'\rangle$$

$$= -\frac{2i}{(2\pi)^{2d}} \frac{1}{\sqrt{\omega_p \omega_{p'}}} \left(e^{-ip'x - ipy} + e^{-ipx - ip'y} \right) \int \frac{d^3k}{\omega_k} \sin\left[k \cdot (x - y)\right] \cos\left(\frac{1}{2}k \cdot \theta \cdot p\right) \cos\left(\frac{1}{2}k \cdot \theta \cdot p'\right).$$

- This could only be nonzero if a timelike component of noncommutativity, θⁱ⁰, is turned on.
- A totally timelike NC theory, θ^{µν} θ_{µν} < 0, yields inconsistent field theories (Comis and Mehan 2000), but a totally lightlike NC θ^{µν} θ_{µν} = 0 is fine (Aharony, Comis, Mehan 2000)

Why Doesn't Spatial NC **Violate Spin-Statistics?** It is surprising that simply turning on spatial NC doesn't produce some sort of spin-statistics violations, since it mixes up coordinates and thus destroys Poincaré symmetry A careful analysis of the generators shows that the Poincaré symmetry is still there but has simply been 'twisted'.

• Let's begin with a real scalar field ϕ ,

$$\phi(x) = \int \frac{d^3k}{(2\pi)^{3/2}} \left(a_{\mathbf{k}} e^{-i\mathbf{k}\cdot\mathbf{x}} + a_{\mathbf{k}}^{\dagger} e^{i\mathbf{k}\cdot\mathbf{x}} \right)$$

This is multiplied using the expression given previously,

$$\begin{split} \phi(x) \star \phi(y) &= \int d^3k \ d^3p \ \tilde{\phi}(k) \tilde{\phi}(p) \left(e^{-ikx} \star e^{-ipy} \right) \\ &= \int d^3k \ d^3p \ \tilde{\phi}(k) \tilde{\phi}(p) e^{-ikx - ipy + \frac{1}{2}k\theta p} \end{split}$$

 But the occupation mode algebra is still unchanged,

$$[a_{\mathbf{k}}, a_{\mathbf{p}}^{\dagger}] = \delta_{\mathbf{k}, \mathbf{p}}.$$

It was claimed by <u>Balachandran</u> et al 2006 that the Fourier modes \(\ell\)(k) themselves should also enter into this, since they furnish a representation of the Poincar\(\ell\) group:

$$P^i \tilde{\phi}(k) = k^i \tilde{\phi}(k). \qquad \star \equiv e^{-\frac{i}{2} \theta^{\mu\nu} P_{\mu} P_{\nu}}$$

 Given the previous mode expansion, this means we should interpret the operators <sup>a_k, a[†]_k as deformed relative to the usual ones <sub>c_k, c[†]_k,
</sup></sub>

$$a_{\mathbf{k}} = c_{\mathbf{k}} e^{-\frac{i}{2}p_{\mu}\theta^{\mu\nu}P_{\nu}}, \qquad a_{\mathbf{k}}^{\dagger} = e^{\frac{i}{2}p_{\mu}\theta^{\mu\nu}P_{\nu}} c_{\mathbf{k}}^{\dagger}$$

This would produce the modified commutation algebra

$$a_{\mathbf{k}}a_{\mathbf{p}} = e^{-ip\cdot\theta\cdot k}a_{\mathbf{p}}a_{\mathbf{k}}, \qquad a_{\mathbf{k}}^{\dagger}a_{\mathbf{p}}^{\dagger} = e^{-ip\cdot\theta\cdot k}a_{\mathbf{p}}^{\dagger}a_{\mathbf{k}}^{\dagger},$$
$$a_{\mathbf{k}}a_{\mathbf{p}}^{\dagger} = e^{ip\cdot\theta\cdot k}a_{\mathbf{p}}^{\dagger}a_{\mathbf{k}} + 2E_{\mathbf{k}}\delta^{3}(\mathbf{p}-\mathbf{k}).$$

- which would undo the usual (spatial) representation of the Moyal *-product, making field multiplication appear to be local, but which would now appear to modify spin-statistics!
- So this suggests that we could interpret a noncommutative theory with usual spinstatistics as a commutative theory with modified spin-statistics, which seems plausible given that space is now "mixed up".

 But this is not actually true (Tureanu 2006), once we recall that this means there must now be *three* Moyal NC multiplications,

$$\phi(x) \star \phi(y) = \int d^3k \ d^3p \ \tilde{\phi}(k) \star e^{-ikx} \star \tilde{\phi}(p) \star e^{-ipy}$$

trivial important trivial

- The only one of these which is nontrivial is the middle one, which will produce exactly the same result as the original Moyal representation
- So purely spatial noncommutativity preserves the usual spin-statistics

Experimental Constraints

- There are bounds on spatial noncommutativity from several sources:
 - Lorentz violation (Kostelecky and Mewes 2002, 2003)
 - QCD gives | θ^{ij} |² < (10¹⁴ GeV)⁻² (Mocioiu, Pospelov, Roiban 2000)
 - QED gives |θ^{ij}|² < (10 TeV)⁻² (Carroll, Harvey, Kostelecky, Lane, Okamoto 2001)
 - Constant B-flux would produce strange matter $\rho \sim a^{-6}$ which must be rare (Nastase 2006)
- Some of these could be interpreted to place bounds on lightlike NC, the one of interest in SS violations (Kostelecky)
- But there may be difficulties in parameterizing this since by definition (Aharony, Comis, Mehan 2000) $\theta^{\mu\nu} \theta_{\mu\nu} = 0$

Conclusion

- Does quantum gravity manifest itself as spinstatistics violations? Greenberg 2000 makes the interesting point that one cannot simply add statistics-violating terms to an action, maybe this is why we have found gravity difficult to quantize
- Can string theory produce such violations, and it is related to the Kalb-Ramond B_{µν} field? Why don't we see such a field? Note that in 4d this is an axion since dB = *da.
- Is there any way to measure such a violation, and is it within reach of existing technology? How do the violations scale? (energy, small parameter, lightlike NC)

Thank you