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What is spin-statistics transmutation

* Spin-statistics transmutation, borrowing a
terminology used in planar systems (Polyakov
1988), is the phenomenon occurring when a
“dressing” interaction modifies the “bare” spin
and statistics of particles or fields.

e Historically it first appeared in Quantum
Mechanics (QM) and Semiclassical Quantum Field
Theory (QFT) settings

e Here we sketch how to implement such
phenomenon in fully quantized (relativistic) field
theory using euclidean correlation functions
(correlators).



Plan of the talk

Historical remarks on spin-statistics
transmutation in QM and semiclassical QFT

The problem of the extension to operators or
correlators in fully-quantized QFT (beyond
semiclassical approximation)

The solution: Dirac ansatz for gauge-invariant
fields and how it opens the way to spin-
statistics transmutation in QFT

Application to anyonsin 2+1 D
Application to dyonsin 3+1 D



Transmutation in QM (Historical remarks)

 Probably the first considered example of
transmutation of spin (from half-integer to integer,
implicit in Tamm 1931) was for dyons: composites
of a magnetic monopole and a charged particle
(-> spinl/2 electron)

e Classically, splitting the location of the electric
charge e of the particle and the magnetic charge g
of the monopole by a distance a #0 along the 3—
axis, the angular momentum J stored in the
generated electromagnetic field
E =e/4n (x-a)|x-a|3, B= g/4n x|x |3 is given by

J;=[d3[x A (E A B)], =eg /4m.



Transmutation in QM: dyons

QM requirement: spectrum of J,=eg /4n € Z/2 (h=1)
-> Dirac (1931) quantization condition eg € 2nZ.
If eg /21t is odd and the charged particle is a boson/
fermion (-> integral/half-integral “bare” spin) the
classical calculation suggests that the composite dyon
carries half—integral/integral spin (spin transmutation)

e Rigorously proved in QM (Hurst 1968) ; later on shown
to survive in QFT with a semiclassical treatment of
monopole in Yang-Mills theories (Jackiw-Rebbi,
Hasenfratz-t” Hooft 1976)

* Defining a physical (gauge-invariant) wave function for
the dyon composites Goldhaber (1976) showed that the
usual spin-statistics connection holds for them.



2+1 D and the rubber band lemma

e Similar phenomena (Wilczek 1982) occur in planar
systems for charge-magnetic flux (vortex) composites.
[assume here spin O for the charged particle]

e For semiclassical vortex -> geometrical interpretation
of the spin-statistics connection (Wilczek-Zee 1983)
inspired by “rubber-band lemma” (Rubinstein-
Finkelstein 1968): if a rubber band is wrapped twice
about a rod, it can exhibit a self-crossing together with
a 2m twist (-> are topologically equivalent)
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Spin as twist, exchange as self-crossing

* Imagine the two boundaries of the rubber band
describe worldlines of charge (e) and vortex- magnetic
flux (@), shifted by UV regulator a #0 as for dyons.

e The 2m twist describes a 2mt rotation ->spin, the self-
crossing an exchange with orientation (under- and
over-crossing are distinct in 2+1 D) ->statistics.

it
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Transmutation in QM: anyons

e The phase factor produced by self-crossing = 21 twist
can computed by Aharonov-Bohm effect (charged particle
in magnetic flux). It is given by 2rt e® times the linking

number # of electric and magnetic flux lines involved (#=+
1)

e -> e mod Z=spin and statistics for such composites
(->transmutation) in a semiclassical treatment of the
vortex. In 2+1 D both the spin (S->Irre-pr-rep of SO(2))
and the statistics (6-> Irre-pr-rep of braid group
generated by oriented exchanges) can be labelled by ANY
number € [0,1] : these composites were called
ANYons .



Problems in extension to QFT

 |In QM and semiclassical treatment only closed
worldlines of particles appear (particles cannot be
created/annihilated): crucial for deriving the above
topological results for spin and statistics .

* |n fully-quantized QFT (Feynman-Schwinger-)
representation of field correlators in terms of the
worldlines of particles exhibits also open paths with
ends corresponding to the insertion of charged
fields, where particles are created/annihilated.

e How to extend the topological arguments of QM to
QFT with open paths, where topological stability
disappears?

Way out: Dirac ansatz for non-local fields.



Transmutation in QFT: non-local fields

In gauge theories one cannot construct a local
charged field operator acting on a physical (positive-
metric) Hilbert space of states (Strocchi 1977)

Example (trivial for transmutation, but easy and
familiar): Quantum Electro Dynamics (QED) in the
operator approach. Let 1Q> =physical vacuum

U (x)= local electron field operator, x € R3

U (x) 1Q> is not a state in the physical Hilbert space

(even with an U.V. regulator). Let Qg be the charge
selecting the space of physical states, | phys >, by
Qgrslphys> = 0, we have

[Qgre , (%) ] # 0 -> Qe P(x) 1Q>20 (1)
(However perturbatively [Qgg., U25(x) ] = 0)



Dirac ansatz
Basic motivation of (1): yi(x) is not gauge invariant.

To turn it into a gauge-invariant field operator Dirac (1955)
proposed the following ansatz . Let A denote the quantum
photon gauge field and E, a classical electric field, Coulomb-

like, satisfying o Hf/' -
divE, =06, (2) (1D suppressed) ¥ /;,/y h

Then a "physical electron operator" is formally given by

O(x) expli fdy A (y)- E, (y)],
it is gauge-invariant, due to (2) but non-local.
[gauge-invariance: U(x)=> U(x) e™® A (y) > A (y)+0 A (y),
(2)-> Jd’y 0 A (y)- E, (y)=-Jd’y A(y)divE,(y) =-A(x)]
The E-dependent phase describes the Coulomb photon
cloud tied to the electron even asymptotically.



Dirac ansatz and Euclidean QFT

e Euclidean correlators of the field operators
U (x) expli [d3y A (y)- E, (y)] (heuristically) have the
following form

<.... P(x) exp[i [d* A (y)- E, (y)]...>

where x = (x°, x) € R*, P(x) is a Grassmann field, A(x)
the gauge field, E,is an electric current distribution
related to E, by E (y) = (0, E, (y) 6(y®—x°)) [so that
div E, =6, ] and <...> denotes the average in the
euclidean path-integral measure for QED .

e An OS-like reconstruction theorem allows to
reconstruct from these Green functions (with UV
cutoff) the corresponding non-local field operators.



Worldline representation

* |ntegrating out U in euclidean QED one can obtain a
Feynman-Schwinger-like representation of
correlators in terms of world lines of two kinds:

e closed, corresponding to virtual particle-antiparticle
pairs, and open with boundary on the points of
“physical” field insertions, corresponding to creation
and annihilation of electrons/positrons.

e At these boundary points the electric flux flowing
through the open worldlines is spread out through
the electric current distributions E , thus preserving
current conservation (-> gauge invariance) in spite
of particle creation/annihilation.



Electric current distributions and open electron worldline in a
2-point euclidean correlator of physical electron field

(1 D suppressed)
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e The “physica

Rotations for Dirac ansatz

|II

charged fields are non-local, with a tail
reaching infinity, hence a rotation by an angle a should be
defined as limit R o= of a IR cutoff rotation U(a)R, acting
as a rotation by a within a ball of
radius R, smoothly

interpolating to the identity
betweenRandR +1

and acting trivially outside a ball “a
of radiusR+1 (->rotation g
generated by a local current). Flux lines of U(a)® (E,)

21t -rotation leaves invariant all local observables ->
(Schur's lemma) its action on charged states is represented
by a phase factor, e2™ , where S identifies the spin (better

the spin-type, i.e. the spin modulo Z).



Spin and statistics for Dirac ansatz

Euclidean :
limg o <... U(21)R (P(x) expli [ d*y A (y)- E,(y)])...>
= e2™<... P(x) expli [ d*y A (y) E,(y)]... >
A priori S has two contributions: local, from the local field
P (x) (-> “bare” spin), and topological at infinity (trivial in
QED), from the dressing, due to the rotated E,, which
may transmute the spin.

Analogously an exchange o on non-local fields should be
defined as lim R —o< of an IR cutoff exchange U(o )R In
the limit it yields (instead of e2™ ) the statistics factor
e’2™  with a possible contribution from e (trivial in
QED), due to the exchanged Dirac dressings.



Spin-statistics transmutation in QFT

 The (topological) contribution at infinity of the
dressing factor of the Dirac ansatz under 2m—
rotation and exchange opens the way to spin-
statistics transmutation in fully-quantized QFT
because it can give an additional contribution
to the spin and statistics phase factors of the
local (non-gauge invariant) field .

 Examples: anyons, dyons, skyrmions (through
a non-abelian version of the dual of the Dirac
ansatz, [J. Froehlich, PA. M., Nucl. Phys. B 335

(1990) 1] ).



Anyons: QFT model

e Inreal physics anyons appear as fractionally charged
carriers in the Fractional Quantum Hall Effect , exhibited
by a 2D electron gas in presence of impurities in a
strong magnetic field at low temperature.

e QFT model example: theory with a complex scalar
(spin 0) field ¢ and an abelian gauge field, A, with
action

S(A, d)=[%1(3,-A ) b2 +% m2| |2 +k/Arti eRPA 0 A

voup
the last term is the Chern-Simons action

(Model dual to that for the FQHE, in a relativistic version)

 We discuss here the euclidean approach, because
easier to render mathematically rigorous (with UV
cutoff) .



Anyons: non-local physical field

E., x € R® = 3-d Coulomb-like electric field satisfying
div E, = 6, with support in a cone in the positive
(negative) time half-space if x°20 (x° <0) to have positive
metric in the OS reconstructed Hilbert space of states
(modified euclidean Dirac ansatz).

Gauge-invariant "physical" euclidean anyon field

d(E,) = &(x) expli fdy A (y) E, (y)]

Via OS one can reconstruct anyon field operators ¢(E,)
with support on wedges (2D Buchholz-Fredenhagen)

d(x) carries electric charge 1 ( by minimal coupling to A )
and magnetic flux 1/2k ( by Chern-Simons) . Therefore
along E, flow both an electric and a magnetic flux; with a
UV regulator we split the support of the two fluxes.



Anyons: spin transmutation

e An IR cutoff 2 t rotation acts on the dressing factor

in the anyon field ®(E,) producing a phase factor
proportional, as R ->c=, to the linking number of
electric and magnetic flux lines. In formulas:

* Define o % by U(2mt )? (E¥, )- E¥, = €"P0  a R =*0a¥

\F‘D;/ <

UQ2m)R(E,)  *dof



Anyons: spin transmutation- computation

limg o, <.... U210 )R (d(x) expli [d3y A (y)- E (y)])...>=
liMg e, <.... P(x) expli fd3y A (y)- (E,(y)+ *0aR (y)]...>=
limg., explim/k[ewp auRdvapR + O(1/R)]
<... &(x) exp[i [d3y A (y) E, (y)])..>=
exp[i 2mt /2k ] <.... d(x) expl[i [d3y A (y)- E, (y)])...>
* [e™Pa,Rd, a, " =linking number # of the electric and
magnetic flux lines of U(2r )R (EX )- EX, (#=1)
e The term O(1/R) comes from the self-interaction of
U(2rt )R (EX, )- EM,

 Hence, although &(x) has spin 0, the physical anyon
field has spin type S = 1/(2k). (spin transmutation)



Anyons: statistics transmutation

* Analogously, consider an IR cutoff exchange with
orientation U(xo )R acting on the product of two fields
®(E,) , d(E’,) with non-overlapping supports.

e As R-> o jtyields a phase factor proportional to the
linking number ([ e a, "9, a, " =t 1) of electric
and magnetic flux lines of U(+o )? (EX, +E'¥ )- (E¥, +
E’M ) )=¢€"*d,a,,® producing a statistics
transmutation to a statistics parameter 8 =+1/(2k).



Spin-statistics connection for anyons

U(+o)*(E’ +E,) U(-0)® (E.+E’))
G(E)D(E’)= limg . .. U(+o)® (E’ )D(E,)= expli rt/k] H(E’)P(E,)

e Spin statistics connection : S= 6=1/2k

e Follows simply from the rubber band lemma
applied to the “rubber band” of electric and
magnetic flux pushed at infinity in the Dirac
dressing



Dyons: QFT model

e |nreal physics dyons should appear in Grand-
Unified and in Supersymmetric (e.g. Seiberg-
Witten like) Yang- Mills Theories. The dynamic of
dyons is described by Dirac-Maxwell equations
(Dirac 1948): O¥F  =€j, OMF =3I,

where j, is the dyon current and IEH\,:sprFPG

e The coupling of the dyon-current with the gauge
fields is given by i [j* (e A +g A ).

e Asin QM setting, the QFT is consistent only if
the Dirac quantization condition eg € 2nZ is
satisfied.



Dirac surfaces

* |n fact, the magnetic poles carried by dyons are
attached to Dirac strings, sweeping in their time
evolution 2-surfaces 2 (Dirac surfaces), which
physically should be unobservable.

* |n the effective action, obtained integrating out
the gauge fields in the partition function, the
Dirac surfaces appear (Schwinger 1966) in the
term
iegfj'At oz, (A=4D Laplacian).
where 2, is the surface current corresponding
(Poincare dual) to the Dirac surface Z whose
boundary is the support of j.



Dirac strings invisible in effective action

* A change of the Dirac surface from 2
to a new surface 2’ with the same
boundary can be realized by shifting
2.y byo,V, withV avolume
current corresponding to the volume — V
V bounded by 2’- 2.

* In the effective action 2%’ produces a term
iegfj'At oo, V,=ieg[j*V € i2nZ
if eg € 2nZ, since j* and V  are Z-valued; hence
the Dirac string is invisible, as physically required.

2
zl




Problem of Dirac ansatz with E,

e |f the currents ¥V are associated (via Feynman-
Schwinger) to a “bare” scalar dyon field ¢(x), the
physical dyon field constructed according to Dirac
ansatz would be
d(x) exp[i fd*y (e A+g A)(y) - E, (y)],
with E, the 3D electric Coulomb distribution field

* |In correlators of physical dyon field the integral
current j is shifted by the non-integral current E..
A change of Dirac surface 2->2%" produces now an
additional term in the effective action:
ieg [E,MV notin i2nZ even if eq € 2nZ,
since E, is not integer. Hence the Dirac string,
unphysically, becomes visible...



Problem with Mandelstam string

 To recover for dyon correlators the independence on the
Dirac string we need to substitute E, by an integer
current j [divj, =0, ] with support on a path at fixed
time starting from x and reaching infinity (Mandelstam
(1962) string ). Since j, is integral ieg [j,*V k6 € i2nZif
eqg € 2nZ and the Dirac string is now invisible again.

 This choice, however, produces IR divergences due to the
oo self-energy of the string ( currents do not decay
sufficiently fast at infinity).



Fluctuating Mandelstam strings

 To avoid IR divergences, one has to replace a fixed
Mandelstam—string j, by a sum over fluctuating
Mandelstam—strings, weighted by an appropriate
measure Du(j,), supported on strings which
fluctuate so strongly that the interaction energy
between two strings is finite, even for an infinite
length.

e This measure Du(j,), with UV lattice cutoff, exists
(Froehlich-M. 1999) and at large distances
[Du(j,)explifj, -Al = exp[ifE, -A]

Hence, on large scales the fluctuating Mandelstam
strings produce a phase factor with the same safe
infrared behaviour of the (standard) Dirac ansatz




Dyons: modified Dirac ansatz

 The result on IR behaviour was checked
by numerical lattice computation |
(Belavin-Chernodub-Polikarpov 2001) '\
Simulation of a typical configuration of a string j, of Du(j,) I'L!% Mol

e Therefore the right “physical dyon field” is
d(x) [Du(j,) expli [d*y (e A+g A)(y) - j, (y)]
and it can be shown formally to satisfy the requirements
for OS reconstruction -> one can obtain from its
correlators a dyon field operator.

e This kind of structure of the physical field is unexpected
on the basis of a semiclassical treatment! However it is
(to my knowledge) the only consistent when dynamical
charges and monopoles coexist.




Linking number for dyons

 Perhaps unexpectedly, using the above
defined dyon field one can export to dyons in
3+1 D, where no obvious concept of linking
exists, the spin-statistics consideration of
linking numbers in 2+1 D discussed before.

* The IR cutoff rotation U(2m )R acts deforming j,
producing a contribution to the effective
action jegfjfvAatonzR | wherej® isthe
current corresponding to U(2m )R (j, )- j, and 2R
is the surface current corresponding to a
surface bounded by the support of j*.



Linking: choice of Dirac surface

e Assume jRat (euclidean) time 0. Choose 2® directed
upward in time:
2R (X2, x)=H(x%) j® (x)g;, and let SR’ denote the
surface current corresponding to the surface at

constant O-time bounded by the support of j},
i.e.jR (x)=0a'SR (x).

support of 2 <> support of)
-] @@» supportofS

|

%0 ,]\ <

T )
f

|
’L
423:
|

_I NANA
[ nERN
i

N O A



Dyons: spin - computation

* iegfd*xjRV(x) fd% AT (x-y) O* SR ()=
iegfd3x j R (x) fd3y fAxPH(X?) AL (xO,x-y) £, 1 R¥ (y) =
iegfd®x j R (x) fd3y % Ay (x-y) &, 0jF (y) =
Vziegjd3x 0 mS Rm] (X) fd3y 2 Ag_l (X-V) Eijk 0'd |S Rid (y) =
Viiegfd3x @ | SR™ (x) g, SR (x)

where A, is the 3D laplacian.

The integral after UV regulation gives the same linking
number computed for the spin of the anyon

(R->SR) . Hence the result is independent of the
Mandelstam string j, in Dp(j,)



Dyons: spin-statistics transmutation

e Result : spin of the physical dyon field S

satisfies expli 2mt S]=exp[z2ieg] and if eg= 21t n with
n odd we have spin transmutation.

Analogously, using the IR cutoff exchange one can
prove also the statistics transmutation in dyon QFT.

e Thus we have shown that choosing the Dirac—
strings along the time direction both spin and
statistics of the dyon field are related to the linking
numbers of electric and magnetic fluxes appearing
in a deformation of Mandelstam strings in a three—
dimensional space at fixed time and again spin-
statistics connection follows from the “rubber
band” lemma.



Summary: spin-statistics
transmutation in QFT

 In QFT with local gauge invariance, a local
non-gauge invariant quantum field has "bare"
spin and statistics which might be modified by
the dressing transformation necessary to
render the field gauge-invariant.

e This dressing can be obtained by a suitable
version of Dirac ansatz and the resulting
“physical” field is non-local with a tail reaching

infinity.



Summary: spin-statistics transmutation in QFT

* One computes the spin (statistics) of the
non-local physical fields by applying an IR
cutoff 2m-rotation ( an IR cutoff exchange)
and removing the IR cutoff by a limiting
procedure.

* Topological contributions at infinity of the
Dirac dressing induce the spin/statistics
transmutation and spin-statistics connection
for the physical field can be derived from a
suitable version of the “rubber band lemma”
in the tail at infinity of Dirac dressing



Comment on skyrmions

e Skyrmions (Skyrme 1962) are solitons of an SU(3)- NLo
model, carrying topological “baryonic “ charge and modeling
baryons in QCD.

e Soliton worldlines can be considered as dual to particle
worldlines and they carry a topological flux. At the boundary
of open worldlines, where solitons are created/annihilated, a
dual Dirac ansatz provides current distributions through
which the topological flux spread out. For skyrmions these
distributions (analogue of E of original Dirac ansatz) are
represented by instantons of zero size.

e Solitons correlators are constructed coupling the dynamical
fields of the NLo model to such instanton distributions ->
spin/statistics transmutation extending beyond the semi-
classical approximation the results of Witten (1983).



Anyon non-local field operators

 The particle spectrum of the theory is massive
(Chern -Simons term makes the photon massive) -
> Buchholz-Fredenhagen (1982) theorem: in RQFT
the support of the physical non-local field
operators “creating” particles (hence ¢(E,)) can be
chosen inside a space-like wedge.

 For non-overlapping supports such |
wedges can be ordered imposing %\ /
origin and orientation to the i 0\
space of space-like directions at /f’/
infinity = S*.




Exchanges with orientation

e This order allows to distinguish the orientation of the
exchange : +0 €>overcrossing (- o €>undercrossing) if the
order in the product of the field operators agree (disagree)
with the order of the directions at o< of their support.

* O(E)(E)= b(E',)d(E,)=
limg.s . U(+0)R &(E’ ) b(E,)= liMmg.s o U(-0)F &(E)D(E’ )=
expli1t/k] G(E’,)d(E,) exp[- t/k] (E,)(E’))

y
U(+o)® &(E’,)b(E,) U(-0)* G (E,)b(E’))



