EXPERIMENTAL TEST OF PAULI EXCLUSION PRINCIPLE

A.S. Barabash, ITEP, Moscow

OUTLINE

Introduction

- Search for anomalous carbon atoms
- Search for transitions to "non-Paulian" states using detector NEMO-2
- Search for "bosonic" neutrino using 2β decay data

I. INTRODUCTION

The Exclusion Principle was formulated by W. Pauli in 1925

(even before the concept of spin was introduced!)

- The PEP is valid for all identical particles with half-integral spin (fermions)
- The PEP forbids that two identical fermions occupy the same quantum state

THEORETICAL SITUATION

- No satisfactory and consistent mechanism of the PEP violation has been proposed so far
- There is no consistent theoretical framework within which the sensitivities of different experiments can be compared
- The exceptional place occupied by the PEP in modern physics does not imply that it does not need further painstaking experimental tests

EXPERIMENT

- Search for non-Paulian atoms and nuclei
- Search for transitions to non-Paulian states in atoms and nuclei
- Check the statistics of neutrinos

1. Search for anomalous atoms

- Non-Paulian" atoms could be a cosmological origin, if not all 10⁸⁰ electrons in the universe are antisymmetrized or if spontaneous transitions of ordinary atoms into "non-Paulian" atoms are possible.
- The chemical properties of atoms with three electrons per **1s** shell must be similar to the properties of their "lower-order" neighbors in the periodic table (*for example, "non-Paulian" carbon is similar to boron*).

In 1989 Novikov and Pomansky proposed to search for anomalous atoms which arose in the universe during the nucleosynthesis. **B-C** and **F-Ne** were proposed as most promising candidates.

1) During the formation of the solar system, a differentiation of the original homogeneous protomatter occurred, according to the chemical properties of the elements. And finally, each element (Z) contains anomalous atoms of the element (Z+1). For example, boron will contain anomalous atoms of carbon.

 $\hat{\mathbf{C}}/B = \hat{\mathbf{C}}/C \times P(Z+1)/P(Z)$

 $P(Z+1)/P(Z) = 2.18 \cdot 10^{6}$ for B-C = 3300 for F-Ne

2) C = t·P(Z+1)/ τ ·P(Z)

C is concentration of anomalous atoms in the host substance;

t is ~ 4.5·10⁹ y (average cosmological time interval during which anomalous atoms were in protomatter);

 τ is the lifetime of an atomic electron with respect to violation of the **PEP**;

P(Z+1) and P(Z) are the cosmic abundance of elements.

Search for anomalous carbon atoms (JETP Lett. 68 (1998) 112)

$\Box P(C)/P(B) = 2.18 \cdot 10^{6}$

□ B: ¹⁰B (19%) and ¹¹B (81%) □ C: ¹²C (99%) and ¹³C (1%)

The anomalous atom ${}^{12}\hat{C}$ contains three K-shell electrons and behaves chemically like a boron atom The idea of the experiment is to remove <u>carbon</u> <u>atoms</u> chemically from a boron sample and then to measure the content of <u>carbon nuclei</u> in it.

- The search for \hat{C} was conducted by γ activation analysis (this method does not produce any radioactive isotopes in B) ${}^{12}C(\gamma,n){}^{11}C; {}^{11}C(20.38 \text{ m}) \rightarrow {}^{11}B + \beta^+ + \nu$
- The experiment was performed on the microtron at the Institute of Physics Problems of the Russian Academy of Science
- Boron grown by zone melting was used (initial content of carbon is 1.5-10⁻³ g/g)

Procedure

- A boron sample (~ 0.1 g) was irradiated with γ-ray bramsstrahlung from 28 MeV electrons
- After irradiation the boron sample was purified <u>chemically</u> from carbon
- Activity of ¹¹C <u>nuclei</u> remaining in the boric acid solution was measured as a function of time (using γ-γ coincidence method)

¹¹C activity versus time

1 - carbon separated from 0.1 g of boron after irradiation

2 - 0.006 g of carbon after irradiation (for comparison)

3 – boron (after chemical separation of carbon)

Inset: the detected positron activity in the boron solution.

There is a "positive" effect!!!

(Of course, it can be connected with rest of normal carbon in the boron sample.)

□ Concentration of anomalous carbon atoms in boron is ≤ 5.10⁻⁶ g/g

Concentration of anomalous carbon atoms in carbon is ¹²Ĉ/¹²C ≤ 2.5·10⁻¹²

□ The lifetime of electrons in a carbon atom relative to violation of the PEP τ ≥2.10²¹ y

Best present limits

Be'/Be	< 9·10 ⁻¹²	Phys. Rev. Lett 85 (2000) 2701
¹² Ĉ/ ¹² C	≤ 2.5 •10 ⁻¹²	JETP Lett. 68 (1998) 112
²⁰ Ñe/ ²⁰ Ne	< 2·10 ⁻²¹	Phys. Lett. B 240 (1990) 227
³⁶ Ãr/ ³⁶ Ar	< 4•10 ⁻¹⁷	Phys. Lett. B 240 (1990) 227

2. Search for "non-Paulian" transitions using detector NEMO-2

Non-Paulian transitions

Non-Paulian process with high energy γ-quantum emission

We are looking for e⁺e⁻ pair created in the source.

Efficiency was calculated by MC.

No events with two tracks and summed energy >4 MeV were found after 16945 h of measurements

 $T_{1/2} > 4.2 \cdot 10^{24}$ y at 90% C.L.

β^{\pm} decays to non-Paulian states

 β^+

ß

We are looking for **two tracks events**.

Selection: electron appears in a plastic scintillator, cross the tracking volume and source and enter a plastic scintillator on the opposite side of the detector.

Efficiency was calculated by MC

One event with energy > 4 MeV was found (2163 h with antineutron shield)

 $T_{1/2}(\beta^+) > 2.6 \cdot 10^{24} \text{ y and } T_{1/2}(\beta^-) > 3.1 \cdot 10^{24} \text{ y at } 90\% \text{ C.L.}$

RESULTS (Eur. Phys. J. A 6 (1999) 361)

Channel	γ emission	β-	β+
Energy window (MeV)	[4,20]	[4,20]	[4,20]
Number of events	0	1	1
Efficiency	1.3.10-4	8.5·10 ⁻³	7.2.10-3
T _{1/2} , y (90% CL)	> 4.2.10 ²⁴	> 3.1.10 ²⁴	> 2.6.10 ²⁴
Best previous	> 1.3.10 ²⁰ [1]	> 8·10 ²⁷ [2]	> 8·10 ²⁷ [2]
results			

[1] B.A. Logan and A. Ljubicic, PR C20 (1979) 1957.

[2] D. Kekez, A. Ljubicic, B.A. Logan, Nature 348 (1990) 224.

Sensitivity of NEMO-3: ~ 10²⁷ y

Sensitivity of SuperNEMO: ~ 10²⁸ y

3. Search for **"bosonic"** neutrino using **2**β decay data

- In 2005 Dolgov and Smirnov assumed that the PEP is violated for neutrinos and, consequently, neutrinos obey (at least partly) the Bose-Einstein statistics [PL B 621 (2005) 1]
- Consequences of this assumption:
 - a) neutrinos may form cosmological Bose condensate (dark matter!)
 - b) "wrong" statistic of neutrinos could modify Big Bang nucleosynthesis
 - c) spectra of the supernova neutrinos may be changed
 - d) PEP violation for neutrinos can be tested in the two neutrino double beta decay experiments

Why it can be possible for neutrinos?

PEP never was checked for neutrinos

Neutrinos are only known neutral leptons

Neutrino can be a Majorana particle (v=v') and violate lepton number conservation

Neutrino has a very small mass

If neutrino is bosonic (or partially bosonic) particle one can see the effect in $2\beta(2\nu)$ decay:

□ Probability of decay will be changed

- Sum and single electron energy spectra will be changed
- □ Angular distribution will be changed

So, $2\beta(2\nu)$ decay is nice process to check possible PEP violation in neutrino sector

A.S. Barabash, A.D. Dolgov, R. Dvornicky, F. Simkovic, A.Yu. Smirnov, Nucl. Phys. B 783 (2007) 90.

The amplitude of the 2β(2ν) decay can be parametrized as $A_{2\beta} = \cos^2 \chi A_f + \sin^2 \chi A_b$

The probability of 2β(2ν) decay is equal to:

 $W_{tot} = \cos^4 \chi W_f + \sin^4 \chi W_b$

where $W_{f,b} \sim |A_{f,b}|^2$

Predictions for decay rate:

□ ¹⁰⁰Mo:

Theory: $T_{1/2}^{f}(0_{g.s.}^{+}) = (6.8 \pm 3.4) \cdot 10^{18} \text{ y}, \ T_{1/2}^{b}(0_{g.s.}^{+}) = 8.9 \cdot 10^{19} \text{ y}$

Experiment: $T_{1/2}(0^+_{g.s.}) = (7.1 \pm 0.4) \cdot 10^{18} \text{ y},$ $\Box 7^6 \text{Ge}:$

Theory: $T_{1/2}^{f}(0_{g.s.}^{+}) = (0.8-1.4) \cdot 10^{21} \text{ y}, \ T_{1/2}^{b}(0_{g.s.}^{+}) = 1.5 \cdot 10^{24} \text{ y}$

Experiment: $T_{1/2}(0^+_{g.s.}) = (1.5 \pm 0.1) \cdot 10^{21} \text{ y},$

Conclusion: $\sin^2 \chi < 0.5$

The normalized distribution of the single electron energy ${}^{100}Mo(0^+_{g.s.}) \rightarrow {}^{100}Ru(0^+_{g.s.})$

The NEMO3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (18 cm) Neutron shield: borated water (~30 cm) + Wood (Top/Bottom/Gapes between water tanks)

 $\implies Able to identify e^-, e^+, \gamma and \alpha$

$\beta\beta$ decay isotopes in NEMO-3 detector

ββ events selection in NEMO-3

Typical $\beta\beta2\nu$ event observed from ¹⁰⁰Mo

¹⁰⁰Mo 2 β 2v result

(Phase I: Feb. 2003 – Dec. 2004)

Phys. Rev. Lett. 95 (2005) 182302

Large admixture of bosonic v is excluded: $sin^2\chi < 0.6$

Conservative limit is $\sin^2 \chi < 0.6$ (In fact, best fit gives $\sin^2 \chi \approx 0.4$ -0.5)

- This is because of the existing disagreement between the data and Monte Carlo simulations (of course, it can be just systematic effect).
- NEMO-3 is current experiment. Systematic will be reduced and sensitivity to *bosonic neutrino* will be improved down to sin²χ ≈ 0.2 (or bosonic nature of neutrino will be established!).

¹⁰⁰Mo. Decay to 2⁺ excited state

 $\Box T_{1/2}(2_{1}^{+}) = 1.7 \cdot 10^{23} \text{ y (fermionic v)}$ = 2.4 \cdot 10^{22} \text{ y (bosonic v)}

 $r_0(2_1^+) = 7.1$ Best present limit is > 1.6-10²¹ y

Final sensitivity of NEMO-3 is ~ 10²² y Sensitivity of SuperNEMO is ~ 10²³ y

HSD nuclei even more sensitive to admixture of bosonic v but calculation of M.E. needed

CONCLUSION

A search for anomalous carbon atoms ¹²Ĉ, atoms with three K-shell electrons, is done. A limit on the existence of such atoms was determined: ¹²Ĉ/¹²C ≤ 2.5·10⁻¹².

It corresponds to a limit on the lifetime with respect to violation of PEP by electrons in carbon atom of τ ≥ 2.10²¹ y.

CONCLUSION (continuation)

The **PEP** was tested with the **NEMO-2** detector:

 $\begin{aligned} \mathsf{T}_{1/2} &> \textbf{4.2-10^{24} y} \ (^{12}\mathsf{C} \to ^{12}\hat{\mathsf{C}} + \gamma) \\ &> 3.1 \cdot 10^{24} y \ (^{12}\mathsf{C} \to ^{12}\tilde{\mathsf{N}} + \mathrm{e}^{-} + \nu) \\ &> 2.6 \cdot 10^{24} y \ (^{12}\mathsf{C} \to ^{12}\mathsf{B'} + \mathrm{e}^{+} + \nu) \end{aligned}$

Using NEMO-3 and SuperNEMO detectors sensitivity could be increased to ~ 10²⁷-10²⁸ y

CONCLUSION (continuation)

- First time PEP was checked for neutrino
- Pure bosonic neutrinos are excluded by the present 2β decay data
- The existing 2β decay data allow to put the conservative upper bound

$\sin^2 \chi < 0.6$

Sensitivity could be increased up to ~ 0.05-0.1 for sin²χ (or we will see the "positive" effect)